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An application of the spectral multidomain method to the two-
dimensional, time-dependent, incompressible Navier—Stokes equations
is presented. The governing equations are discretized on a non-
staggered, stretched mesh with a mixed finite difference,:’Chebyshey
method and are integrated by a time-splitting procedure. The accuracy
of the muitidomain method is demonstrated for two different channel
flow configurations, one with a backward-facing step and the other
with a rectangular step. The method is then applied to the investigation
of the effects of an isolated, two-dimensional roughness element
on the spatial development of instability waves in boundary layers.
© 1994 Academic Press, Inc,

i. INTRODUCTION

Domain decomposition methods, particularly the multi-
domain approach, for solving fluid dynamics problems
using spectral methods have gained significant attention in
recent years. A comprehensive review of related investiga-
tions and of different solution procedures, including the
spectral element method [10, 71, can be found in Canuto
etal. [3]. The primary reason for the popularity of the
multidomain procedure is its ability to consider each sub-
domain independently, aliowing a different mesh resolution
in each subdomain. Consequently, subdomains of the flow
field containing regions of sharp gradients can have as many
grid points as necessary, independent of the mesh resolution
in the others. Therefore, the use of the multidomain method
as opposed to a single domain approach may be especially
suitable for complex geometries, such as the flow over a
step. Such configurations have significant applications
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in computational fluid dynamics, e.g, in the numerical
simulation of transition over aircraft wings where surface
irregularities can be approximated as small surface roughness
elements utilizing the multidomain method.

In the present work, the multidomain method, applied
only along the wall-normal direction (defined as the direc-
tion perpendicular to the free stream velocity), is based on
an influence matrix technique requiring the continuity of the
variables and their first derivatives across the interfaces [9].
In particular, we focus on the accuracy and continuity of
the intetface conditions for two different channel flow
configurations (Fig. 1), using a mixed finite difference/
Chebyshev method to integrate the two-dimensional, time-
dependent, incompressible Navier-Stokes equations [4, 5].
The flows over a backward-facing step and a rectangular
step in a channel constitute excellent cases to test the
accuracy of a numerical method because the reattachment
length strongly depends on the Reynolds number of the
flow. The application of the present method to more
realistic fluid problems such as the investigation of the
effects of a surface roughness element on the instability and
transition of boundary layer flows is also presented.

2. GOVERNING EQUATIONS

We consider the incompressible Navier—Stokes equations
in nondimensional form written as

V.U=0, (1a)
U
—+

2 (1b)

1
(U-VYU=-Vp+—V.
Re
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FIG. 1. Schematic of the flow (a) over a backward-facing step and (b)
over a step in a two-dimensional channel. Dashed lines indicate domain
interfaces.

In the above equations, U = (x, v) is the velocity vector with
streamwise (x) and normal (y) velocity components,
respectively; ¢ is time and p represents pressure. Also, Re is
the Reynolds number defined as Re=u,, A/v and Re=
i, 6F /v for the channel flow and boundary layer config-
urations, respectively. Here, H is the channel height, ,, is
the maximum velocity at inflow, 8%} is the boundary layer
displacement thickness at inflow, uw,, is the free stream
velocity, and v is kinematic viscosity.

For channel flows, the governing equations are integrated
subject to the no-slip boundary conditions at solid
boundaries. A fully developed parabolic velocity profile is
prescribed at the inflow, and at the outflow, the computa-
tional domain is appended with a buffer domain in which
the governing equations are modified to have strictly out-
going waves [ 5] The buffer domain method enables the
correct imposition of nonperiodic inflow—outflow boundary
conditions required by spatially evolving flows and in
separated flows where upstream effects are important.

In case of the boundary layer simulations, the above
equations are written for the total velocity to obtain the
steady state solutions for the base flow in the presence of a
roughness element; the Blasius solution is used as the initial
condition for these computations. This converged solution
is then prescribed as the base flow for the instability simula-
tions in which Eqs. (1a) and (1b) are written for the pertur-
bation quantities. The perturbation equations are obtained
by decomposing the flow variables into a steady base flow
and a time-dependent component. For smooth plate
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simulations, the base flow is readily available from the
solution of the Blasius equation.

Both the total and perturbation velocity equations are
integrated subject to the no-slip boundary condition at solid
boundaries. In all the simulations, the outer boundary of the
computational domain extends upto 100 6% . At this far field
boundary, the free stream conditions are applied. Conse-
quently, the following relations were imposed for the total
velocity and perturbation equations, respectively, at the
outer boundary

ov

= 1, _
U 6};

=0 (total velocity) {1c}

w'=v"=0 (perturbation velocity). (1d)
In Eq. (1d}, the primes denote the perturbation quantities.

For the total velocity equations, the inflow conditions
consist of the Blasius profiles, whereas for the perturbation
equations, a two-dimensional Tollmien—Schlichting (TS)
wave is imposed at the inflow, so that

Ulx=0, y, t)= A,,R[E e~ ], (2)

In Eq. (2), A,, is the amplitude of the inflow perturbation
velocities and E,,, = (u}, v}) is the complex velocity vector
obtained from the spatial eigenfunctions of the Orr-
Sommerfeld equation, corresponding to real frequency wy.

Also, i=./—1 and R[ ] represent the real part of a com-
plex number. Boundary layer simulations also incorporate
the buffer domain method at the outflow.

3. SOLUTION PROCEDURE

The governing equations are discretized on a non-
staggered, stretched grid by using fourth-order central finite
differences along the streamwise direction and by the
Chebyshev collocation matrix method along the normal
direction. The multidomain method can also be used with
staggered grids and its application follows the approach
described in this paper. A time-splitting procedure which
uses the implicit Crank-Nicolson scheme for the normal
direction diffusion terms is applied for time integration. All
of the other terms are treated explicitly by a third-order,
compact, low-storage Runge-Kutta method [11]. In order
to satisfy the global mass conservation, the homogeneous
Neumann boundary conditions for the pressure Poisson
equation are converted to nonhomogeneous Dirichlet
boundary conditions by the capacitance matrix method.
The eigenvalue decomposition technique is then utilized to
numerically integrate the Poisson equation with the
Dirichlet boundary conditions. Grid points are smoothly
clustered in the vicinity of the step. The computational pro-
cedure requires about 25 us per time step per grid point on
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the CRAY-2S at NASA Langley Research Center and is
about twice as expensive as our previous single domain
solver [5]. However, the current method is applicable to
complex geometries with preserved spectral accuracy. The
details of the numerical scheme are given in Danabasoglu

[4]

3.1. Multidomain Method

In order to resolve the sharp flow field gradients in the
vicinity of solid boundaries along the normal direction, the
multidomain method [9] was implemented to divide the
computational domain into several subdomains (Fig. 1)
and the governing equations were integrated separately in
each subdomain. In Figs. 1la and 1b, subdomain interfaces
are denoted by dashed lines. Because subdomains may
not necessarily coincide with the Chebyshev interval
(— 1< y< 1), the application of the method requires the use
of mapping functions along the normal direction; linear
analytical functions were used for this purpose. Along the
streamwise direction, fourth-order central finite differences
are used on a stretched mesh in all the subdomains. At the
corners, values of flow field variables are obtained from the
solution in the upper subdomain (Fig. 1b) and because
the finite difference discretization in lower subdomains does
not require the corner values during the integration step,
these values are unique,

In the subsequent parts of this section, the application
of the multidomain method is illustrated by considering
the one-dimensional model momentum equation. The
application of the procedure to the Poisson/Laplace
equations is also included.

3.1.1. Multidomain Method for the Momentum Equations

In the present work, because only the normal direction
diffusion terms are treated implicitly, the discretized
momentum equations reduce to one-dimensional systems.
Therefore, the following example 1is sufficient to
demonstrate the application of the method to the momen-
tum equations, Let us consider,

GV=RHS

for yel[d e].

(3a)
Here, G is a coeflicient matrix resulting from the discretiza-
tion of the momentum equations, V is the vector of
unknowns representing discrete values of  or v, and RHS
is the right-hand-side vector. Equation (3a) is to be
integrated subject to Dirichlet boundary conditions,

V(d) = £

(3b)
Vie) = g..

The boundaries are arbitrarily placed at 4 and e with e > d.
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The multidomain method allows the subdivision of the
computational domain into any number of subdomains.
For sake of simplicity, we split the main integration
domain into two arbitrary regions at y=c with d<c <e.
Consequently,

Domain I: [d, ¢],

Domain IT: [¢, e].

Point ¢ is common to both regions and ¥(c) is yet unknown.

The first step in the solution procedure consists of deter-
mining a solution that contains the influence of a unit
disturbance at the interface point, requiring the integration
of the following homogeneous systems of equations:

Domain I,
GV =0, (4a)
with
Vid)=0, 4b)
Vile)=1;
Domain 11,
GVi=0, (5a}
with
.y —
oo o

Here, subscript 1 stands for the first solution, and
superscripts I and I refer to the first and second domains,
respectively.

The second solution is obtained by integrating the
nonhomogeneous system (Eqs. (3a)-(3b)) subject to a
homogeneous Dirichlet interface condition:

Domain I,
GV.i=RHS, {6a)
with
I
(d)=ga
e (6b)
Vyle)=0;
Domain 11,
GVY=RHS, (7a)
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with

Vie)=0,

(7b)
Viie)= g..
Once we have solutions 1 and 2 for each domain, because
the system under consideration is a linear one, the total
solution can be formed as

Domainl: V'=V}+ 9V},

8
Domain II: /= ¥ 4 yp it (8)

where v is a constant to be determined from the interface
condition.

The interface condition can be found by imposing the
continuity of the solution at point ¢ which requires

! evn
E(C’)=W (c). 9

Because point ¢ is common to both domains and there is
only one value of y, the function value at y = ¢ is unique,
Substituting for the derivatives from Egs. (8) into Eq. (9),

we obtain
vy e vy
[ew _TEi]

FAN TG,
[757_ QV}

y= . (10)

Once y is known, the total solution can be calculated from
Eqgs. (8).

This solution method does not require any iterative
procedure to find the interface value and the first solution is
only a function of the geometry which can be calculated
once in the first time step and used in the subsequent
computations.

3.1.2. Multidomain Method for the Poisson/Laplace
Equations

The application of the multidomain method to the
Poisson/Laplace equations is more involved than its
application to the momentum equations due to the
multidimensionality of the problem. Let us consider the
following elliptic equation

¥ P =RHS, {11a)
with nonhomogeneous Dirichlet boundary conditions. In

this equation, P is the matrix of unknowns, RHS represents
the right-hand-side matrix, and % is the two-dimensional
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discrete Laplace operator. The equation is integrated in the
Cartesian domain defined as
xela, b].
yeldel,
with &>« and e > d. Therefore, the boundary conditions
can be written as
Pla, y)=fu»),
P(b, J’)=fb(Y),
P(x’ d) = fd(x}7
P(x, e)= f(x}.

(11b)

Here, f,(»), fs(¥), fi(x), and f.(x) represent arbitrary
functions used as boundary conditions.

We start the process by dividing the integration domain
into two subregions, defining an interface line at p = ¢ with
d < ¢ < e. Consequently, we obtain

DomainI: xe [q, b], ye [d, ¢],
DomainIl: xe [q, b], ye [c, e].
First, we compute the influence of unit interface distur-

bances on the system and form an influence matrix. For this
purpose, we consider a series of homogeneous equations,

Domain I,
2Pl =0, (12a)
with
P'(a, y)=P!(h, y) =P'(x, d) =0,
Pl(x, ¢)=8{(z,,) on the interface for m=1,2,.., N,;
(12b)
Domain IT
Pl =0, (13a)
with
P%a, y)=P"(b, y) =P"(x,e) =0,
P'(x, ¢}=4d(1,,) on the interface for m=1,2, .., N,.
(13b)

The above equations are solved for each interface point 1,,.
In Eqgs. (12) and (13}, 4(z,,) (delta function) represents the
unit interface disturbance, N, is the number of interface



APPLICATION OF THE SPECTRAL MULTIDOMAIN METHOD

points excluding the boundary points, and # is the solution
related to the mth interface point. Next, we calculate the
residual vectors, R,,, which represent the discontinuity in
the two solutions. These vectors must be eliminated to make
the final solution continuous and are written as

o (2P, 0P
”'ﬂ( ay _—5y_)’

forming the columns of the influence (residual) matrix, R,

(14)

R={R,, Ry .., Ry ]
In the above procedure, the only array that requires storage
is R, and the intermediate solutions can be overwritten.

The second step of the multidomain method requires the
solution of the actual system,

P =RHS, {16a)
with
P(a, y)=f.(»),
P(b, y) = fuly) (16b)
P(x, d)= f4(x),
P(x,e)= fx).

Recaliing that the computational domain contains two
subdomains, the above system can be written as

Domain I,
#P'=RHS, (17a)
with
Pl{a, ¥)= f.»)
Pl(b, y) = ful¥) (17b)
Pl(x, d)= f.(x),
Pl{x, c)=10;
Domain I,
ZP" =RHS, {18a)
with

P'a, )= f.(»),

PII b, = ,

"( y)=/1i(») (18b)
P'(x, c)=0,
P(x, e) = f.(x).

- (15)
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Once P! and P" are calculated, the residual vector, R,, is

obtained from
T 111
o (2P 0P
dy 0y

Of course, because P(x, c}=0 are not the true interface
conditions, R, is not equal to zero. The true interface values
are the ones which make the interface residuals zero.
Consequently, by solving

(19)

RR,=R,,
or
R,=R7'R,, (20}
we obtain the true interface conditions, R,.
Now, solving
Domain I,
FP!'=RHS, (21a)
with
Pla, y)=fa(y)
P{5,
o Y= foly (21b)
(X, d) = fd(x y
Pl(x,c)=R,;
Domain I,
ZP"=RHS, {22a)
with
P'(a, p)= fd»).
P(b, ¥) = [l ),
=/, (22b)

Px, c)=R,
Pl(x, e) = fu(x),

gives the actual solution.

The application of the multidomain method to the
solution of Poisson/Laplace equations with Neumann
boundary conditions is very similar to the above procedure
and is given in Danabasoglu [4].

4. RESULTS AND DISCUSSION

4.1. Application to the Poisson Equation

Before implementing the multidomain technique to the
solution of the Navier-Stokes equations, we tested the
accuracy of the method, especially the smoothness of
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FIG. 2. L, norm error distribution for the model problem (Poisson
equation) as a function of the x-direction mesh resolution.

Y000

the solution at domain interfaces, for an example problem
consisting of the Poisson equation given as

a2 g2
vip={L &
d (ax2+ay2)P

= —2n? cos(nx) cos{my), (23)

subject to homogeneous Neumann boundary conditions. In
Eq. (23}, P 1s the unknown function, and the integration
domain is 0 € x <2 and 0 € y € 2. The exact solutien, P,,
for this model problem reads

P {x, y)=cos(nx) cos(my). (24)
a
11
I
FIG. 3.

DANABASOGLU, BIRINGEN, AND STREET

Here, we set y=0.75 as the mterface line, and used 21
Chebyshev collocation points along the normal direction in
both subdomains; along the x-direction, equally spaced grid
points were used. In Fig. 2, the L, norm error is plotted as
a function of the mesh resolution along the x-direction,
showing the global accuracy of the solution method.
Because the numerical scheme is reduced to second-order at
the boundaries, the overall accuracy of the method is less
than fourth order. The computational grid and the contours
of P computed using 41 points aleng the x-direction are
presented in Fig. 3, revealing the smoothness and continuity
of the solution at the interface which is denoted by a dashed
line. In Fig. 4, the interface distribution of the variable P is
compared with the exact solution, showing excellent agree-
ment. The distribution along the y-direction is identical to
the distribution along the x-direction, atesting to the
symmetry of the solution.

4.2, Application to the Navier—Stokes Equations

The first test problem we discuss in this section is the
backward-facing step with a step height of s = H/2. Conse-
guently, the computational domain can be conveniently
divided into two equal subdomains (Fig. 1a). The numerical
simulations were performed for Re = 150, 400, and 700; for
Re = 150 and 400, the governing equations were integrated
on a 21{y}x 127(x} mesh in each subdomain with stream-
wise length of 6.5 in the physical domain. Also, at the
outflow boundary, the length of the buffer domain was 3.6
with 24 grid points along x over this length. For Re =700,
the physical domain length was set to 12 with a resolution

b

)

S

(a) Computational grid (21(y)x41(x} mesh in both subdomains) and {(b) P contour plot for the model problem (contour interval

(CI) =0.1). The dotted lines indicate negative levels in related figures. The interface (dashed line) is at y=0.75.
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FI1G. 4. Comparison of the numerical solution (A) with the exact
solution (B) at the interface (y = 0.75) for the mode! problem.

of 21 x 172 grid points in each subdomain; the same buffer
domain length was used for this case. The computational
grid used in the latter simulations is displayed in Fig. 5.

The steady state reattachment lengths normatized by s for
these three cases are presented in Table I and are compared
with experimental measurements [17] and other numerical
studies [1, 8, 2]. Accordingly, the present results display
better agreement with the experimental measurements. In
Figs. ba—, we give the contours of streamwise velocity, u,
spanwise vorticity, «_, and velocity vectors at several
streamwise locations for Re=700, In Fig.6a, as a
manifestation of high Reynolds number effects, the forma-
tion of a second separation bubble attached to the upper
wall is clearly depicted. These figures also demonstrate the
smoothness and continuity of the solution at the multi-
domain interface, thus lending evidence to the accuracy of
the interface conditions.

As a second test problem, we considered the flow over a
rectangular step placed in a two-dimensional channel
(Fig. 1b). For this case, the parameters and the geometry
were matched to the experimental conditions of Gackstatter
[61 and Tropea and Gackstatter [127]. Consequently, the
step height and length are equal to H/2Z and 2H, respec-
tively, and Re=162.6. The governing equations were
integrated in three subdomains (Fig.7) with 21 x95,
21 x 245, and 21 x 77 grids, respectively, in each subdomain.
These grids resolve a total physical domain length extending
for 0 < x < 10. For this geometry, the buffer domain length
was 3.8 with 34 grid points over this length.

The numerical simulations were continued until the solu-
tion reached a steady state. The results revealed a reattach-
ment length of 4.8 (normalized by s5) downstream of the step
which is identical to the measured reattachment length
obtained by Gackstatter [6]. The smoothness of the solu-
tions revealed in the contour plots of w and @, (Figs. 8a and
b) reaffirm the continuity and accuracy of the interface con-
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TABLEI

Normalized Reattachment Lengths for the Flow
over a Backward-Facing Step

Armaly et al® Armaly et al® Kim & Moin®  Biringen & Kao“

Re Present [11 [1] [8] [2]
150 31 3.1 31 31 —
400 63 63 6.0 6.4 6.5
00 95 2.6 88 94 9.1

¢ Experimental measurements,

545 x 45 non-uniform mesh (streamwise length = 4 = reattachmem length). For
Re =700, a finer mesh was applied.

© 101 x 101 mesh (streamwise length = 15).

733 % 129 uniform mesh (streamwise length = 15).

ditions. Finally, in Fig. 8c, velocity vectors plotted at several
streamwise positions indicate that the flow preserves its
initial parabolic velocity distribution untii it accelerates
near the step, where a jet-like behavior is observed.

4.3. Spatial Simulation of Boundary Layer Instability:
Effects of Surface Roughness

In this section, we summarize the boundary layer
instability simulations in which an isolated roughness ele-
ment is placed downstream of the origin of disturbances at
x =63.34 with roughness height, h, = 1.16 (Fig. 9). Because
the inflow boundary is placed at Re=625.19, the local
Reynolds number at the roughness location is Re=712.8.
Hence, the step height based on the local displacement
thickness is # = 1.01. The length-height ratio of the step is
set to 6.06:1, and u,,/v=4.4x10°m "' The free stream
boundary is at y = 101.16. Also, the streamwise length of the
physical domain is set to 16192 and the buffer domain
length is 40.

With this configuration, the Navier-Stokes equations
were integrated on 21 x 217, 61 x 568, and 21 x 288 grids in
the physical domain for subdomains I, II, and II1, respec-
tively, using the base flow and a disturbance field with
wr=0.0928 as the initial and inflow conditions. Because
this frequency is in the linearly unstable region for the
Blasius flow, in the following discussion, it is referred to as
the Tollmien—Schlichting (TS) frequency. The integration of
the Orr-Sommerfeld equation for w,=0.0928 and Re;: =
625.19 gives a.=0.24916 —i0.11643 x 10 ~2, representing an
unstable mode; here, a is the complex wave number. The

FIG. 5. Computational grid for the flow over a backward-facing step in a two-dimensional channel for Re = 700. Each subdomain contains 21 x 172
grid points; the buffer domain is not included,
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FIG. 6. Flow over a backward-facing step at Re = 700: {(a} contour plot of ». Contour intervals are .03 and 0.1 for the negative and positive levels,
respectively; {(b) contour plot of @, (CI=1.0); and (c) velocity vectors at x =0, 1.25, 1.56, 1.82,2.09, 241, 2.68, 3.07, 3.60, 3.86, 4.26, 4.59, 4.85, 5.51, 591,
6.80, 7.80, 9.00, 10.50, and 12.00. In {c), the bottom figure is the continuation of the top figure. Flow direction is from left to right.

streamwise length of the physical domain used in this
simulation allows the resolution of about 65 TS
wavelengths with a minimum of 60 grid points per
wavelength. Also, during the integration, we set A,,=
0.0005, and use 500 time steps per TS period.

The streamwise variation of (#,, )max 18 given in Fig. 10
{curve A); the distribution obtained from a smooth plate
simulation with the same parameters is also shown in the

SEESSEIEESS3335322

figure for comparisen purposes (curve B). Here, rms
represents root-mean-square and max refers to maximum
over y at a given x-location. The distribution with the
roughness clement deviates slightly from the smooth plate
case in the region upstream of the roughness element. The
presence of the element is manifested by a spike-like
behavior at x = 63.34. After a slight decay over the element,
the amplification in the separation zone is clearly observed.

FIG. 7. Grid for the flow over a step in a two-dimensional channel for Re = 162.6. Each subdomain contains 21 x 95, 21 x 245, and 21 x 77 grid

points, respectively; the buffer domain is not included.
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FIG. 8. Flow over a step at Re = 162.6: (a) contour plot of «. Contour intervals are 0.05 and 0.25 for the negative and positive levels, respectively;
(b) contour plot of e, (CI =7.5); and (¢) velocity vectors at x =0, 1.40, 2.80, 3.92, 473,499, 552, 6.61, 6.99, 7.40, 8.13,9.01, and 10.00. In (c), the bottom
figure is the continuation of the top figure. Flow direction is from left to right.

We calculate the spatial growth rate of the disturbances as
a;~ —0.12 in the region downstream of the roughness ele-
ment, 77.42 < x < 91.32, where growth is almost linear. This
growth rate is significantly higher than the value predicted
by the parallel linear stability theory, indicating that initially
small amplitude disturbances attain finite amplitudes rapidly
due to the amplifving effect of the roughness clement.

Free stream

Domain 1

Y

FIG. 8. Schematic of the two-dimensional boundary layer with an
isolated roughness element. Dashed lines indicate domain interfaces.

In the subsequent simulation, we increase the perturba-
tion frequency to w , = 0.1856 which is stable for the Blasius
flow; because this frequency is higher than the TS frequency
for the Blasius flow, in the following discussion we will refer
to this simulation as the inviscid frequency case. As before,
the inflow conditions correspond to the eigenfunctions
obtained from the Orr-Semmerfeld equation, using the

(u'r-ml )maz

8 Loy o ooy oo

o] 50 f 100 150
F4

FIG. 10, Streamwise distributions of ()., - With roughness, vz =
0.0928 (A); without roughness, wz=10.0928 (B); with roughness, w,=
0.1856 {C); and without roughness, ;= 01856 (D). Roughness element is
located at x = 63.34 indicated by an arrow.
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G

FIG. 11. Contour plot of @) (CI=10.005) for wg= 01856, Normal
direction is stretched by a factor of 10. Negative levels are indicated by
dotted lines. Flow direction is from left to right.

Blasius profile which vields a stable mode with a = 0.44812 +
i0.18925 x 10~ " for wx = 0.1856. For this simulation, about
13 wavelengths of the fundamental disturbance are resoived
along the streamwise direction with 35 grid points per
wavelength. The amplitude of the perturbations is kept at
A= 0.0005,

Figure 11 presents the contour plot of spanwise pertur-
bation vorticity, ., obtained after 26 TS periods and
demonstrates that the disturbances are amplified in the
separation zone and attain finite amplitudes rapidly in a
short streamwise distance: farther downstream, the distur-
bance amplitudes attenuate slightly. In the smooth plate
simulations without the roughness element, using the same
initial conditions, the disturbances generated by this high
frequency forcing rapidly decay.

The x distribution of (u)m,)max for the inviscid frequency
case is presented also in Fig. 10 (curve C) along with the TS
frequency case (curve A) for comparison purposes. In
accordance with the parallel linear stability theory, the
disturbances decay upstream of the roughness element;
however, a significant growth is observed in the separation
zone (curve C). The computed spatial growth rate in
7742 < x<91.32 is o;~ —0.19, which is considerably
higher than the value calculated for w , =0.0928. In Fig, 10,
curve D represents the distribution obtained from the
flat plate simulation. These results are in good agreement
with the experiments of Boiko, Dovgal, Kozlov, and
Shcherbakov [13].

5. CONCLUSIONS

The multidomain method was successfully applied to
numerically integrate the two-dimensional, time-dependent,
incompressible Navier-Stokes equations. The test cases
consisting of flows over a step and a backward-facing step
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placed in a channel revealed excellent agreement with the
experimental results. The distributions of flow variables
displayed no discontinuities at the interfaces, lending
evidence to the accuracy of the interface conditions and to
the applicability of the spectral multidomain method to
complex geometries.

In the presence of an isolated, two-dimensional roughness
element placed in a boundary layer, the computed spatial
growth rates are significantly higher than those predicted by
the linear theory for both Tollmien—Schlichting (TS)
frequencies and higher (inviscid) frequencics. However, the
inviscid frequencies obtain higher spatial amplification rates
compared to the TS frequencies, suggesting that disturbances
growing in the separation zone have an inviscid character,
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